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Abstract— In this paper we present a features extractor for 

speech recognition. The proposed features extraction method 

based on auditory filter modelling. The latter uses a 

Gammachirp Filterbank (GcFB), where their center frequencies 

are selected according to one of the three scales: the ERB-rate 

scale, the MEL scale or the BARK scale. The performance of the 

proposed features is evaluated, in the context of isolated words-

recognition, on the TIMIT database. The recognition rate of our 

features extraction method with ERB-rate scale gives interesting 

results vs. the other two scales. The HTK platform (HMM 

Toolkit) recognizer is employed for the recognition system task. 

It’s based on the Hidden Markov Models with Gaussian Mixture 

densities (HMM-GM). 
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I. INTRODUCTION 

 

Automatic Speech Recognition (ASR) is currently a 

significant research topic, since it can be serving as a man-

machine interface in wide variety of applications [1]. The 

traditional features extractions used in the ASR applications as 

Mel-Frequency Cepstral Coefficients (MFCCs) [2] and 

Perceptual Linear Prediction (PLP) [3] are frequently based on 

human auditory system modeling. Better modeling of this 

system will improve the features robustness [4]. The auditory 

filterbank is generally used in the auditory model to simulate 

the human cochlear filtering. Specifically, a Gammatone 

filterbank has been exploited in various speech processing 

applications such as the ASR applications and the CASA 

systems [5]. 

Irino and Patterson [6] recently proposed a theoretically 

optimum auditory filter know as a Gammachirp filter, which 

represents an extension of the popular Gammatone filter with 

an additional analytic chirp term. This filter characterized by 

an asymmetric amplitude characteristic, offers an excellent fit 

to psychophysical masking Data [6], [7], [8]. 

In this paper, we propose features extraction method based on 

the human auditory filter and relies on the Gammachirp 

Filterbank (GcFB). The used filterbank is composed of 34 

Gammachirp Filters covering the frequency ranges of 50-8000 

Hz (sampling frequency equal to 16 kHz) [9]. The center 

frequencies of the used GcFB, are selected successively 

according to one of the three scales: the ERB-rate scale [10], 

the MEL scale [2] and the BARK scale [11], [3]. 

The Hidden Markov Model with Gaussian Mixture 

(HMM_GM)-based speech recognition system was performed 

using HMM toolkit (HTK.3.4.1) [12]. The Performance of the 

features extractor is assessed on the TIMT database.  

The paper is presented as follows.  After the introduction, 

we present the proposed features extraction method based on 

auditory filter modeling for speech recognition. Following this, 

in Section 3, we give the main evaluation results. Finally, 

conclusions are summarized in the last Section. 

 

II. THE PROPOSED FEATURES EXTRACTION  

 

The proposed features extraction approach is based on 

Gammachirp filterbank. The latter provides a spectrum 

reflecting the spectral properties of the human auditory system. 

The various steps of our features extractor (Perceptual Linear 

Predictive Gammachirp coefficients, PLPGc) are shown in Fig. 

1. In our approach, the speech signal processing begins with 

pre-processing consisting in pre-emphasizing the signal using 

a high-pass filter characterized by a transfer function equal to 

(1-0.97z-1).  

 In the second step, the pre-processed speech signal is framed 

(typically 25 ms frames shifted about 10ms each time) and 

windowed using a Hamming-window. The power spectrum is 

then calculated by performing the square of DFT (Discrete 

Fourier Transform), for each frame of the speech signal. 

In the third step, the power spectrum is decomposed into a 34-

channel Gammachirp filterbank covering the frequency range 

of 50-8000 Hz [9], where the impulse response of the 

Gammachirp filter [7], [13], [14], is given by 

 

                  
2 ( ) 2 ln1( ) c cbERB f t j f t jc t jn

cg t at e e
π π ϕ− + +−

=
                 (1) 
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Here, time  t>0,  n  and  b  are  parameters  defining  the 

envelope of the gamma distribution, a  is  the  amplitude, and 

fc is the asymptotic frequency [15]. c is a parameter for the 

chirp rate,  ln(t) is the natural logarithm of time, ϕ  is the 

phase,  and ERB(fc) is  the  equivalent  rectangular bandwidth 

of the auditory filter at fc [16], [17].  

The bandwidth of the Gammachirp filter is set according to its 

ERB, the value of ERB at frequency f in Hz [17], [5] is given 

by 

       ( ) 24.7 0.108ERB f f= +                      (2)                                  

 

The center frequencies of the Gammachirp auditory filterbank 

are chosen successively according to one of the three scales:  

♦ The ERB-rate scale [10 ] :  

              10( ) 21.4 log (0.00437 1)ERBrate f f= + +        (3) 

♦ The MEL scale [2] : 

               ( ) 1127 0.1048log(1 / 700)MEL f f= × +          (4)    

♦ The BARK scale [11], [3]. 

2( ) 13arctan(0.00076 ) 3.5arctan(( / 7000) )BARK f f f= +   (5) 

 

The figure 2 represents the mapping function from linear to 

logarithmic scale of the normalized scale of ERB-rate, Mel 

and Bark scale for a frequency range from 0 to 8000 Hertz 

 

Fig. 2. Comparison between the ERB-rate, Mel and Bark scale 

In the fourth and fifth steps, the output of the Gammachirp 

filterbank is weighted and compressed using equal-loudness 

pre-emphasized and the intensity-loudness conversion. The 

next step consists to use an autoregressive all-pole model in 

order to obtain an approximation of the simulated auditory 

spectrum [3]. The proposed features coefficients are obtained 

by applying a cepstral transformation in the last steps. 

 

{ }

 

Fig. 1. Block diagram of our features extractor  
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III. EXPERIMENTAL RESULTS 

 

To evaluate the performance of our features extraction 

method, we used isolated words extracted from the TIMIT 

database [18]. This database contains 630 speakers with 

sampling frequency of 16 kHz. A total of 9702 isolated-words 

were used for the learning phase. For the recognition phase, 

we used 3525 isolated-words. The Hidden Markov Model 

Toolkit (HTK 3.4.1) [12] recognizer is employed for the 

recognition task. The HMM topology is a 5-states and 4-

Gaussian Mixtures per state were trained for each vocabulary 

isolated-words. The table 1 represents the parameters used in 

gammachirp filterbank. 

 
TABLE 1 USED PARAMETERS USED OF THE GAMMACHIRP  

 

Parameter Value 

n 4 

b 1.019 

c 2 

 

 

The tables 2 and 3 represent respectively the recognition rates 

percentage (%) of the proposed features PLPGc (PLPGc_Brut) 

and the features PLPGc included the energy (E), the first (∆) 

and second-order (A) temporal derivatives of the features 

coefficients (PLPGc+E+∆+A) for the three frequency scales 

ERB-rate, MEL and BARK. In these two tables, we defines 

the number of correct words H, the number of deletions words 

D, the number of substitutions words S and the total number 

of words in the defining transcription files N. 

As illustrated in table 2, we can observe that the recognition 

rate of the proposed features using the Gammachirp auditory 

filterbank (GcFB) with their center frequencies are chosen 

according to ERB-rate scale is performed better than that with 

the center frequencies of GcFB are selected according to the 

MEL and the BARK scales. 

The recognition rate of our features with EBB-rate frequency 

scale achieved, 92.00 %, while the proposed features with 

MEL and BARK frequency scale had respectively, 91.69% 

and 91.29%. 

The experimental results of the proposed features with the 

dynamic properties (PLPGc+E+∆+A) are presented in table 3. 

We also observed that a small increase of recognition rate of 

proposed features (PLPGc+E+∆+A) with ERB-rate scale that 

with MEL and BARK scales. 

 

 

TABLE 2. RECOGNITION RATE (%) OBTAINED USING THE PROPOSED FEATURES (PLPGC_BRUT) WITH CENTER FREQUENCIES OF GAMMACHIRP FILTERBANK    

(CF-GCFB) ARE CHOSEN ACCORDING TO ERB-RATE, MEL OR BARK SCALES. 

    HMM 4 GM    

 
Scale 

 (CF-GcFB) 
% N H S D 

  ERB-rate 92.00 3525 3243 282 0 

 Proposed features PLPGc 

Brut 
MEL 91.69 3525 3232 293 0 

  BARK 91.29 3525 3218 307 0 

 

 

TABLE 3. RECOGNITION RATE (%) OBTAINED USING THE PROPOSED FEATURES (PLPGC + E + ∆ + A) WITH CENTER FREQUENCIES OF GAMMACHIRP FILTERBANK 

(CF-GCFB) ARE CHOSEN ACCORDING TO ERB-RATE, MEL AND BARK SCALES. 

    HMM 4 GM    

   
 

Scale 

 (CF-GcFB) 
% N H S D 

Proposed features PLPGc 

+E + ∆ + A 

ERB-rate   98.16 3525 3460 65 0 

MEL  98.04 3525 3456 69 0 

BARK  97.93 3525 3452 73 0 
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IV. CONCLUSIONS 

 

In this paper, we have presented a features extraction 

method that relies on the spectral analysis of the auditory filter. 

The proposed approach is based on the Gammachirp 

filterbank (GcFB), where the values the center frequencies of 

the GcFB, being chosen according to one of the three 

frequencies scales: the ERB-rate scale, the MEL scale or the 

BARK scale. The experimental results show that our features 

gives better recognition rates, with the center frequencies of 

the GcFB are based on the ERB-rate scale compared to those 

obtained using the MEL and the BARK scales 
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